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Synthesis  

NMOA, NEOA, NHMA and NMMA were synthesized through nucleophilic addition of 

appropriate amines (3a-d) to a protected ornithine thiourea (2, Scheme S1).
1,2

 MHA was 

synthesized according to Clement and coworkers.
3
 

 

Scheme S1. Synthesis of NHA Analogs NMOA, NEOA, NHMA, NMMA.  

 

 

General Synthetic Materials and Methods 

CbzNCS was prepared according to the procedure of Martin et al. 
1
  N-Boc-L-ornithine 

tert-butylester hydrochloride (1) was purchased from Bachem, methoxylamine-[
14

C]-

hydrochloride (34 mCi/mmol) was purchased from American Radiolabeled Chemicals. All other 

reagents were commercially available (Sigma Aldrich) and were used without further 

purification. Analytical thin layer chromatography was visualized by ultra violet light and/or 

ninhydrin stain. 
1
H and 

13
C NMR spectra were recorded in CDCl3 or D2O on a 500 or 125 MHz 

spectrometer, respectively. Chemical shifts are reported as δ values in parts per million with the 

CDCl3 and D2O peaks set at 7.26 and 4.80 ppm, respectively for 
1
H spectra. 

13
C spectra were 

referenced to CDCl3 at δ 77.0 ppm High-resolution mass spectra were obtained using an Agilent 

6210 ToF-LC/MS mass spectrometer; analyses were performed in the positive ion ESI mode.  
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N
ω
-Benzyloxycarbonyl-N

α
-tert-butyloxycarbonyl-L-thiocitrulline tert-Butyl Ester (2) 

N
α
-tert-Butyloxycarbonyl-L-ornithine tert-butyl ester hydrochloride (1, 400 mg 1.4 mmol) was 

dissolved in anhydrous CH2Cl2 (20 mL). DIEA (0.28 mL, 1.6 mmol) was added to obtain the 

free base. The flask was cooled to 0 °C and 4.0 mL of a 0.5 M solution of CbzNCS in CH2Cl2 

was added dropwise over 30 minutes. The mixture was further stirred for 2 hours while warming 

to room temperature.  The reaction was washed with 1 % HCl (25 mL), H2O (25 mL) and brine 

(25 mL). The organic phase was dried over Na2SO4 and concentrated. The crude material was 

purified by column chromatography (hexanes:EtOAc 4:1, Rf = 0.45) to obtain a yellow oil (540 

mg, 90 %). 
1
H NMR (500 MHz, CDCl3): δ = 1.45 [s, 9 H, C(CH3)3], 1.47 [s, 9 H, C(CH3)3], 1.70 

-1.85 (m, 4 H, β,γ-CH2), 3.66 (m, 2 H, NCH2) , 4.22 (m, 1 H, α-CH), 5.10 (m, 1 H, NH), 5.12 (s, 

2 H, CH2Ph), 7.38 (m, 5 H, ArH), 8.11 (br s, 1 H, NHCbz), 9.67 (br s, 1 H NHBoc). 
13

C NMR 

(500 MHz, CDCl3): δ = 24.2 (γ-CH2), 28.1 [C(CH3) 3], 28.4 [C(CH3) 3], 30.3 (β-CH2), 45.2 

(NCH2), 53.6 (α-CH2), 68.2 (CH2Ph), 79.8 [C(CH3)3], 82.2 [C(CH3)3], 128.4, 128.6, 128.8 

(ArCH), 134.6 (ArC), 152.5 (thiourea-C), 155.4 (CO-Boc), 171.5 (CO2-t-Bu), 179.0 (CO-Cbz). 

 

General Method for Preparation of Protected NHA Analogs (4a-d)
1,2

 

To a solution of EDC (1.5 eqv) and thiourea (2) (0.5 mmol) in anhydrous CH2Cl2 (5 mL), was 

added a mixture of DIEA (1.5 eqv) and the amine hydrochloride (3a-d, 3.0 eqv) in 5 mL of 

CH2Cl2. The reactions were stirred overnight at room temperature. The organic phase was 

washed with 1 % HCl (10 mL), H2O (10 mL) and brine (10 mL). The organic phase was dried 

over Na2SO4 and concentrated. The resulting oils were purified by column chromatography.   
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N
α
-tert-butylcarbonyl-N

ω
-Benzyloxycarbonyl-N

ω’
-methoxy-L-arginine tert-Butyl Ester (4a) 

Amine (3a) = methoxyamine hydrochloride; eluent: hexanes:EtOAc (4:1); Rf = 0.3; yield 93%, 

colorless oil. 
1
H NMR (500 MHz, CDCl3): δ = 1.46 [s, 9H, C(CH3)3], 1.48 [s, 9H, C(CH3)3], 1.72 

-1.87 (m, 4H, β,γ-CH2), 3.13 (m, 2H, NCH2), 3.68 (s, 3H, OCH3) 4.21 (m, 1H, α-CH), 5.16 (m, 

1H, NH), 5.17 (s, 2H, CH2Ph), 6.29 (m, 1H NH), 7.40 (m, 5H, ArH), 7.95 (br s, 1 H NHBoc). 

13
C NMR (125 MHz, CDCl3): δ = 24.9 (γ-CH2), 28.1 [C(CH3) 3], 28.4 [C(CH3) 3], 30.2 (β-CH2), 

40.6 (NCH2), 53.8 (α-CH2), 61.4 (OCH3), 67.7 (OCH2Ph), 79.6 [C(CH3)3], 81.9 [C(CH3)3], 

128.4, 128.6, 128.7 (ArCH), 135.1 (ArC), 148.2, 152.9  (guanidine-C, CO-Cbz), 155.4 (CO-

Boc), 171.8 (CO2-t-Bu). 

 

N
α
-tert-butylcarbonyl-N

ω
-Benzyloxycarbonyl-N

ω’
-ethoxy-L-arginine tert-Butyl Ester (4b) 

Amine (3b) = ethoxyamine hydrochloride; eluent: hexanes:EtOAc (4:1); Rf = 0.27; yield 85%, 

colorless oil. 
1
H NMR (500 MHz, CDCl3): δ = 1.47 [s, 9H, C(CH3)3], 1.49 [s, 9H, C(CH3)3], 1.70 

-1.90 (m, 4H, β,γ-CH2), 3.12 (m, 2H, NCH2), 3.27 (t, J = 6 Hz, 2H, OCH2), 3.98 (q, J = 6.5 Hz, 

3H, OCH2CH3), 4.21 (m, 1H, α-CH), 5.16 (m, 1H, NH), 5.17 (s, 2H, CH2Ph), 6.29 (m, 1H NH), 

7.40 (m, 5H, ArH), 7.95 (br s, 1H, NHBoc). 
13

C NMR (125 MHz, CDCl3): δ = 12.6 (OCH2CH3), 

23.8 (γ-CH2), 28.1 [C(CH3) 3], 28.4 [C(CH3) 3], 30.3 (β-CH2), 40.3 (NCH2), 53.8 (α-CH2), 67.8 

(OCH2Ph), 72.9 (OCH2), 79.6 [C(CH3)3], 81.9 [C(CH3)3], 128.4, 128.6, 128.7 (ArCH), 135.1 

(ArC), 148.3, 153.2  (guanidine-C, CO-Cbz), 156.7 (CO-Boc), 171.6 (CO2-t-Bu). 

N
α
-tert-butylcarbonyl-N

ω
-Benzyloxycarbonyl-N

ω’
-hydroxy-N

ω’
-methyl-L-arginine tert-Butyl 

Ester (4c) 

Amine (3c) = N-methylhydroxylamine hydrochloride; eluent: hexanes:EtOAc (4:1); Rf = 0.22; 

yield 80%, colorless oil. 
1
H NMR (500 MHz, CDCl3): δ = 1.42 [s, 9H, C(CH3)3], 1.46 [s, 9H, 
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C(CH3)3], 1.65 -1.80 (m, 4H, β,γ-CH2), 3.45 (m, 2H, NCH2), 3.48 (s, 3H, NCH3) 4.11 (m, 1H, α-

CH), 5.20 (m, 1H, NH), 5.25 (s, 2H, CH2Ph), 7.40 (m, 5H, ArH). 
13

C NMR (125 MHz, CDCl3): 

δ = 25.1 (γ-CH2), 28.1 [C(CH3) 3], 28.4 [C(CH3) 3], 30.2 (β-CH2), 40.7 (NCH2), 42.1 (NCH3), 

53.4 (α-CH2), 67.8 (OCH2Ph), 80.2 [C(CH3)3], 82.3 [C(CH3)3], 128.4, 128.6, 128.7 (ArCH), 

135.1 (ArC), 148.0, 152.8 (guanidine-C, CO-Cbz), 156.4 (CO-Boc), 171.8 (CO2-t-Bu). 

 

N
α
-tert-butylcarbonyl-N

ω
-Benzyloxycarbonyl-N

ω’
-methoxy-N

ω’
-methyl-L-arginine tert-

Butyl Ester (4d) 

Amine (3d) = N,O-dimethylhydroxylamine hydrochloride; eluent: 5% MeOH in CH2Cl2; Rf = 

0.28; yield 95%, colorless oil. 
1
H NMR (500 MHz, CDCl3): δ = 1.44 [s, 9H, C(CH3)3], 1.46 [s, 

9H, C(CH3)3], 1.65 -1.80 (m, 4H, β,γ-CH2), 3.12 (s, 3H, NCH3) 3.30 (m, 2H, NCH2), 3.66 (s, 3H, 

OCH3) 4.16 (m, 1H, α-CH), 5.14 (m, 1H, NH), 5.10 (s, 2H, CH2Ph), 7.32 (m, 5H, ArH). 
13

C 

NMR (125 MHz, CDCl3): δ = 25.3 (γ-CH2), 28.0 [C(CH3) 3], 28.3 [C(CH3) 3], 30.3 (β-CH2), 38.5 

(NCH2), 42.6 (NCH3), 53.5 (α-CH2), 60.8 (OCH3), 66.8 (OCH2Ph), 79.7 [C(CH3)3], 82.1 

[C(CH3)3], 127.6, 127.8, 128.2 (ArCH), 137.6 (ArC), 152.8, 155.4 (guanidine-C, CO-Cbz), 160.4 

(CO-Boc), 171.6 (CO2-t-Bu). 

 

General Procedure for NHA Analogs (5a-d) 

To protected NHA analogs (4a-d) dissolved in 20 mL MeOH was added Pd/C (10 mol %). The 

flask was sealed then purged and flushed three times with H2. The reaction was stirred under H2 

atmosphere for two hours. The reaction was then filtered through a pad of Celite, rinsing 

thoroughly with MeOH. Solvent was removed in vacuo and the intermediates were redissolved 
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in 4 M aqueous HCl. Intermediates were stirred for two hours at room temperature and solvent 

and HCl was removed in vacuo. 

 

N
ω
-Methoxy-L-arginine (5a) 

1
H NMR (500 MHz, D2O): δ = 1.65 -1.75 (m, 2H, γ-CH2), 1.85-1.95 (m, 2H, β-CH2), 3.25 (t, J = 

7 Hz, 2H, NCH2), 3.69 (s, 2H, OCH3), 3.99 (t, J = 6 Hz, 1 H, α-CH). 

13
C NMR (125 MHz, D2O): δ = 23.6 (γ-CH2), 26.9 (β-CH2), 40.2 (NCH2), 52.8 (α-CH2), 64.5 

(OCH3), 157.4 (guanidine-C), 172.3 (COOH). 

HRMS (ESI): m/z [M+H]
+
 calculated 205.1295, found 205.1299. 

 

N
ω
-Ethoxy-L-arginine (5b) 

1
H NMR (500 MHz, D2O): δ = 1.20 (t, J = 7 Hz, 3H, CH3), 1.60 -1.75 (m, 2H, γ-CH2), 1.85-1.95 

(m, 2H, β-CH2), 3.25 (t, J = 7 Hz, 2H, NCH2), 3.85 (t, J = 6 Hz, 1H, α-CH), 3.92 (q, J = 7 Hz, 

2H, OCH2). 

13
C NMR (125 MHz, D2O): δ = 12.4 (CH3), 23.6 (γ-CH2), 27.1 (β-CH2), 40.2 (NCH2), 53.4 (α-

CH2), 72.9 (OCH2), 157.6 (guanidine-C), 173.2 (COOH). 

HRMS (ESI): m/z [M+H]
+
 calculated 219.1452, found 219.1461. 

 

N
ω
-Hydroxy-N

ω
-methyl-L-arginine (5c) 

1
H NMR (500 MHz, D2O): δ = 1.65 -1.95 (m, 4H, β,γ-CH2), 3.23 (s, 3H, NCH3), 3.27 (t, J = 7 

Hz, 2H, NCH2), 4.03 (t, J = 6.5 Hz, 1H, α-CH). 

13
C NMR (125 MHz, D2O): δ = 23.6 (γ-CH2), 26.7 (β-CH2), 39.4 (NCH3), 40.7 (NCH2), 52.6 (α-

CH2), 157.7 (guanidine-C), 171.9 (COOH). 
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HRMS (ESI): m/z [M+H]
+
 calculated 205.1295, found 205.1297. 

 

N
ω
-Methoxy-N

ω
-methyl-L-arginine (5d) 

1
H NMR (500 MHz, D2O): δ = 1.65 -1.85 (m, 4H, β,γ-CH2), 3.25 (s, 3H, NCH3), 3.30 (t, J = 6 

Hz, 2H, NCH2), 3.67 (s, 3H, OCH3), 4.98 (t, 1H, α-CH). 

13
C NMR (125 MHz, D2O): δ = 26.4 (γ-CH2), 29.9 (β-CH2), 33.1 (NCH3), 42.9 (NCH2), 55.8 (α-

CH2), 67.5 (OCH3), 159.8 (guanidine-C), 171.5 (COOH). 

HRMS (ESI): m/z [M+H]
+
 calculated 219.1452, found 219.1453. 
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Determination of Michaelis-Menten kinetics for NHA, NMOA and NHMA 

Figure S1. Michaelis-Menten curves for NHA, NMOA, and NHMA with (A) nNOS and (B) 

iNOS. NO production was measured using the hemoglobin capture assay. Each concentration 

was tested in triplicate. 

A. 
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B. 
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Spectral Binding Assays: Ks determination 

 

Figure S2. iNOS-imidazole. A. iNOS with imidazole titrations, difference spectra. B. Michaelis-

Menten plots of difference spectra of iNOS with imidazole titrations, Ks = 120 - 150 µM, over 

multiple experiments. 

 

Figure S3. iNOS-NHA. A. iNOS plus 300 µM imidazole with NHA titrations, difference 

spectra. B. Michaelis-Menten plots of difference spectra of iNOS plus 300 µM imidazole with 

NHA titrations, Ks apparent = 82 µM, Ks actual = 29 µM. 

 

Figure S4. iNOS- NMOA. A. iNOS plus 300 µM imidazole with NMOA titrations, difference 

spectra. B. Michaelis-Menten plots of difference spectra of iNOS plus 300 µM imidazole with 

NMOA titrations, Ks apparent = 350 µM, Ks actual = 122 µM. 
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Figure S5. iNOS-NHMA. A. iNOS plus 300 µM imidazole with NHMA titrations, difference 

spectra. B. Michaelis-Menten plots of difference spectra of iNOS plus 300 µM imidazole with 

NHMA titrations, Ks apparent = 95 µM, Ks actual = 34 µM. 

 
Figure S6. iNOS-NMMA. A. iNOS plus 200 µM imidazole with NMMA titrations, difference 

spectra. B. Michaelis-Menten plots of difference spectra of iNOS plus 200 µM imidazole with 

NMMA titrations, Ks apparent = 187 µM, Ks actual = 70 µM. 

 
Figure S7. iNOS MHA A. iNOS plus 100 µM imidazole with MHA titrations, difference 

spectra. B. Michaelis-Menten plots of difference spectra of iNOS plus 100 µM imidazole with 

MHA titrations, Ks predicted to be greater than 10 mM. 
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Figure S8. iNOS-NEOA. A. iNOS plus 200 µM imidazole with NEOA titrations, difference 

spectra B. Michaelis-Menten plots of difference spectra of iNOS plus 200 µM imidazole with 

NEOA titrations, Ks apparent = 320 µM, Ks actual = 120 µM. 
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Determination of Inhibition Constants (Ki)  

Figure S9. Dose-response curves for (A) NMMA and (B) NEOA with iNOS. NO production 

was measured using the hemoglobin capture assay; from the IC50 value, Ki was calculated using 

the Cheng-Prushoff relationship, Ki = IC50/(1 +[S]/Km), where Km of 8.3 µM was used for murine 

iNOS.
4
 (C) Inactivation evaluation. NAHA = N

ω
-allyl-N

ω
-hydroxy-L-arginine, a known NOS 

inactivator 
5
 was used as a control. No significant difference was observed between control and 

NMOA, NHMA, NEOA, NMMA, or MHA at 12 and 24 h. 
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14
C-NMOA experiments 

Figure S10. HPLC Chromatographs of iNOS-[
14

C]-NMOA Reactions Analyzed at 460 nm and 

by 
14

C-Scintillation Counting. 

 

(A) A control NDA-derivatization of [
14

C]-NMOA stock solution was separated by HPLC with 

detection at 460 nm and one minute fractions were collected and 
14

C counted. These spectra 

show that all 
14

C elutes at 11.7 minutes, indicating there are no 
14

C-containing contaminants 

eluting elsewhere from the column. 

  

(B) NDA-derivatization of the [
14

C]-NMOA iNOS reaction was separated by HPLC, fraction-

collected and scintillation-counted. These spectra show early fractions (2-4 minutes) contain 
14

C. 

This low retention time, of what is presumably a one-carbon metabolite from the iNOS-[
14

C]-

NMOA reaction, appropriately suggests it is higly polar. Remaining 
14

C elutes at 11.7 minutes 

indicating it is unreacted NMOA. Turnover for this specific reaction analyzed was measured to 

be 19% by absorbance and 16% by 
14

C detection. The peak at 4.2 minutes that absorbs at 460 nm 

is NDA-citrulline, confirmed by retention time as well as by mass spectrometry (see below and 

in main text). 
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(C) The [
14

C]-NMOA-iNOS reaction DNPH-derivatized and analyzed by HPLC separation with 

360 nm detection and fraction collected for scintillation counting. In this case, nearly all 
14

C 

elutes very early. No significant 
14

C eluted at 13.6 minutes, the retention time DNPH-

formaldehyde standards, indicating the one carbon metabolite of these reactions is not 

formaldehyde.  There is, surprisingly, a large DNPH-formaldehyde peak that is detected at 360 

nm that elutes at 13.6 minutes, as well as some unreacted DNPH eluting at 11.9 and 12.1 minutes 

(as expected). Upon further examination of all iNOS-substrate reactions, all reactions, even the 

substrate-free iNOS reaction, has a significant level (between 600-1000 µM) of background 

DNPH-formaldehyde detected by absorbance at 360 nm. The source of this background DNPH-

formaldehyde has not been found but seems to be from the NOS enzyme itself. The mass of this 

peak from iNOS reactions has been confirmed to be DNPH-formaldehyde by mass spectrometry 

analysis (see below). 

  
 

(D) DNPH-derivatized [
14

C]-NMOA-iNOS reactions incubated with MeOX. A DNPH-

formaldehyde peak is present at 13.6 minutes by spectral detection at 360 nm, consisting of 

background formaldehyde as well as some [
14

C]-formaldehyde.  The 
14

C eluting between 13 and 

15 minutes corresponds to 4.6 % of the total 
14

C, but the [
14

C]-NMOA-iNOS reaction had 25 % 

turnover by measurement of NDA-citrulline. Incomplete conversion to [
14

C]-formaldehyde is 

expected because MeOX also catalyzes formaldehyde into formate, which would have a very 

low retention time. 
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(E) DNPH-derivatized [
14

C]-NMOA-iNOS reactions incubated with MeOX and FDH. From a 

total of 25% turnover (by measurement of NDA-citrulline) 
14

C can be accounted for as DNPH-

formaldehyde (7.8 %), CO2 (12 %) and the missing 5.2% remains undetectable as formate. 
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Crystal Structures 

Figure S11. The Fo – Fc omit electron density map contoured at 2.5 σ for the substrate 

analogues (and active site water) bound in rat nNOS: (A) NMOA; (B) NEOA; (C) 

NHMA; (D) NMMA; (E) MHA. 
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Figure S12. Crystal structure of tBuOArg in the nNOS active site. As expected, for bearing such 

a bulky substituent, the active site water is displaced. 

 

 

 

Figure S13. HPLC chromatographs of NDA derivatized products of iNOS-NMOA (A) and 

iNOS-NHMA (B) reactions (citrulline), including an initial timepoint (1 min) and a timepoint 

after 1 h of reaction time. Phenylalanine is used as an internal standard. 
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NMR Spectra of Final Products  

N
ω
-Methoxy-L-arginine (5a), D2O 
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N
ω
-Ethoxy-L-arginine (5b), D2O 
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N
ω
-Hydroxy-N

ω
-methyl-L-arginine (5c), D2O 
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N
ω
-Methoxy-N

ω
-methyl-L-arginine (5d), D2O 

 



 

 S26

 

 

References 

(1) Martin, N. I.; Woodward, J. J.; Marletta, M. A. NG-hydroxyguanidines from primary 

amines. Org. Lett. 2006, 8, 4035–4038. 

(2) Schade, D.; Kotthaus, J.; Clement, B. Efficient synthesis of optically pure Nω-alkylated l-

arginines. Synthesis 2008, 2008, 2391–2397. 

(3) Schade, D.; Töpker-Lehmann, K.; Kotthaus, J.; Clement, B. Synthetic approaches to 

N(delta)-methylated L-arginine, N(omega)-hydroxy-L-arginine, L-citrulline, and N(delta)-

cyano-L-ornithine. J. Org. Chem. 2008, 73, 1025–1030. 

(4) Cheng, Y.-C.; Prusoff, W. H. Relationship between the inhibition constant (Ki) and the 

concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic 

reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. 

(5) Zhang, H. Q.; Dixon, R. P.; Marletta, M. A.; Nikolic, D.; van Breemen, R. B.; Silverman, 

R. B. Mechanism of inactivation of neuronal nitric oxide synthase by N [omega]-Allyl-l-

arginine. J. Am. Chem. Soc. 1997, 119, 1088–10902. 

 


